Electron domain geometry of brf5

For BrF5, we have a total of 42 valence electrons. Bromine is the least electronegative, we'll put that in the center and then we'll put 5 Fluorines around the outside. We'll draw single bonds between the atoms for a total of 5 single bonds, so 10 valence electrons. Then we'll go around the outside, 12, and complete the octets for Fluorine: 14 ...

Electron domain geometry of brf5. Ammonium [NH4]+ ion Lewis dot structure, molecular geometry or shape, electron geometry, bond angle, hybridization, formal charges, polar vs non-polar. [NH 4] + is the chemical formula that represents the ammonium ion. The ammonium ion is an important nitrogen source for plants. It is used in the chemical industry for fertilizer …

The electron-domain geometry considers all regions of electron density, which includes bonding pairs and lone pairs. However, in the case of CS2, the central sulfur atom has two double bonds with carbon atoms and no lone pairs, leading to only two regions of electron density. This two-region arrangement dictates a linear electron-domain geometry.

Electron Domain Geometry Of Brf5 lay the groundwork for your academic or professional pursuits. In this chapter, we explore the significance of Electron Domain Geometry Of Brf5, their role in your journey, and set the stage for the comprehensive preparation that follows. Electron Domain Geometry Of Brf5 serve as a critical assessment of yourTo determine the electron geometry of compounds, several principles such as the Lewis structure, valence shell electron pair repulsion, and octet rule are considered. The Lewis structure is used to determine the bonding and nonbonding electrons by illustrating the valence electrons participating in the formation of chemical bonds in the reaction.You'll get a detailed solution from a subject matter expert that helps you learn core concepts. Question: Give the electron-domain and molecular geometries for the following molecules and ions. Part A). HCN electron-domain geometry Linear Trigonal planar Tetrahedral Trigonal bipyramidal Octahedral Part B).Brf5 Electron Domain Geometry Of Brf5: In this groundbreaking Electron Domain Geometry Of Brf5, we embark on a transformative journey to demystify the challenges of Electron Domain Geometry Of Brf5. Whether you are a student preparing for an academic milestone or a professional seeking to enhance your knowledge, this guide is your roadmap to ...Question: Give the electron-domain and molecular geometries for the following molecules and ions. molecular geometry -Select- electron domain (a) NH CI ---Select- (b ...

Electron Domain Geometry Of Brf5 EXPERIMENT 9 - Dot Structures and Geometries of Molecules Lewis Dot Structures and VSEPR - surryschools.net Lewis Dot Structures and Molecular Geometry Chapter 9 Molecular Geometries and Bonding Theories Sample Exercise 9.1 Using the VSPER Model - Central Lyon Study with Quizlet and memorize flashcards containing terms like The electron-domain geometry of a carbon-centered compound is tetrahedral. The hybridization of the central carbon atom is, Of the following, only __________ has sp2 hybridization of the central atom., Of the following, the central atom is sp3d2 hybridized only in __________ and more. BrF5 or bromine pentafluoride is a polar molecule. The molecular geometry of BrF5 is square pyramidal with an asymmetric charge distribution. The molecule has a central bromine ato...For this molecule, determine the molecular geometry, electron domain geometry, bond angles, and hybridization about the central atom. Write the Lewis formula for the given species. Indicate the number of electron groups and the electronic and molecular or ionic geometries. ... BrF5; Write the Lewis structure for NO_2. Predict and draw its ...Question: Use the Lewis Structure of Bromine pentafluoride(BrF5) to answer the following:a)What is its electron-domain(charge-cloud) geometry?b)What is its molecular geometry?c)Ignoring lone-pair effects, express the smallest bond angleas an integer d)What is the hyrbidization about the central atom[express analogous to sp^2]

Electron geometry AXE notation Molecule polarity Ideal bond angle Chemical compound from molecular shape Electron hybridization Number of electron domains Number of unbonded electron pairs around central atom Total number of valence electrons: Electron domains (select at least one): 1-4 domains (more common) 5-7 domains (more challenging!) Both!An explanation of the molecular geometry for the XeF5 + ion (Xenon pentafluroide anion) including a description of the XeF5 + bond angles. The electron geome...You'll get a detailed solution from a subject matter expert that helps you learn core concepts. Question: Give the molecular geometry and number of electron groups for BrF5. Select one: A. square planar, 6 electron groups B. square pyramidal, 6 electron groups C. T-shaped, 5 electron groups D. octahedral, 6 electron groups E. seesaw, 5 electron ...Chemistry questions and answers. MGB Table 9.4 Comparison of electron domains Experimentally Predicted Predicted Bond Determined Angles Lewis Molecule Structure Molecular Geometry Bond Angles So, Question 9.2: Do nonbonding pairs occupy more, less, or the same amount of space as bonding pairs? STOP Your lab instructor must check your work.

Freestyle libre 3 coupons.

Chemistry questions and answers. BrF4+ Use the matching numbers below to indicate the molecule Hybridization Electron-domain geometry Molecular geometry and Polarity Hybridization: 1 = sp. 2 = sp2, 3 = sp3, 4 = sp3d, 5 = sn3d2 Electron-domain geometry: 6 = linear, 7 = Trigonal planar, 8 = Tetrahedral, 9 = Trigonal bipyramidal, 9 = Octahedral ...1a) Draw the Molecular structure (3D drawing) for: NOF, BrF5, FNO2, SF6, IF4-, NH4+, CIF2+, N3-, XeF5-, and PO4^3-1b) Draw a Lewis structure for each molecule below. Then, using VSEPR theory and the chart provided on the back of this quiz, identify the molecular geometry of each molecule and label it.Chemistry. Chemistry questions and answers. 1) Determine the electron domain geometry AND the molecular geometry of the following molecules. Remember to draw a Lewis structure to support your answer. i. BrCl5 ii. BCl3 iii. PH3 2) Determine the electron domain geometry AND the molecular geometry of the following species.Study with Quizlet and memorize flashcards containing terms like The basis of the VSEPR model of molecular bonding is _____., In counting the electron domains around the central atom in VSEPR theory, a _____ is not included., The electron-domain geometry of _____ is tetrahedral. A) CBr4 B) PH3 C) CCl2Br2 D) XeF4 E) all of the above except XeF4 and more.Question: What is the electron-domain (charge-cloud) geometry of BrF5? What is the electron-domain (charge-cloud) geometry of BrF5? This question hasn't been solved yet! Not what you’re looking for? Submit your question to a subject-matter expert.

This problem has been solved! You'll get a detailed solution from a subject matter expert that helps you learn core concepts. Question: Give the molecular geometry and number of electron groups for BrF 5. O T-shaped, 5 electron groups octahedral, 6 electron groups square planar, 6 electron groups square pyramidal, 6 electron groups seesaw, 5 ...(nonpolar or polar) (d) BeHz Electron domain geometry: Electron domain geometry: Molecular geometry: Molecular geometry: Polarity (nonpolar or polar) Polarity (nonpolar or polar) 2.16 points By overlapping the following orbitals on... with others? Oil and water don't mix Gasoline and water also do not mix. However, mbul p ciples of Solubility.Mar 28, 2024 · This determines the electron domain geometry. Use the number of electron domains and the presence of lone pairs to predict the electron domain geometry (e.g., linear, trigonal planar, tetrahedral, etc.). Based on the electron domain geometry and the presence of lone pairs, determine the molecular shape (e.g., linear, bent, trigonal pyramidal ... In Lewis Structure formation, we have to check whether all the atoms have their least possible formal charge values. Let us calculate for BrF3: F: Formal Charge= 7- 0.5* 2 -6 = 0. Br: Formal Charge= 7- 0.5*6 -4 = 0. We can see that the three F atoms and the single Br atom all have their formal charge value to be 0.MO diagram depicts chemical and physical traits of a molecule like bond length, bond energy, bond angle, shape, etc. Following are the steps to design the MO diagram of PCl5 : Step 1: Identify the valence electrons of each atom. In PCl5, it is 5 for P and 7 for every 5 atoms of Cl. Step 2: Check if the molecule is heteronuclear or homonuclear.Electron Geometry: The atom of chemical elements bond to a central atom to form compound and the distance between the bonding electrons contribute to the molecular shape of the compound. When we do not account the nonbonding pairs of electrons, the electron geometry is the same as the molecular shape. The electron geometry represents the shape ...We would like to show you a description here but the site won't allow us.Electron Geometry vs Molecular Geometry. Electron geometry considers the lone pairs as well as the bonds on the central atom. Molecular geometry, on the other hand, only considers the the bonds and the shape made by the atoms. So when the central atom contains no lone pairs, the two types of geometries are the same.Jan 16, 2023 · The electron-domain geometry of BrF5 is octahedral due to the six electron pair groups surrounding the central bromine atom. For the molecular geometry of BrF5, if we take into account the lone pair on the bromine, the shape is described as a square pyramidal.

We recommend using the latest version of Chrome, Firefox, Safari, or Edge. Explore molecule shapes by building molecules in 3D! How does molecule shape change with different numbers of bonds and electron pairs? Find out by adding single, double or triple bonds and lone pairs to the central atom. Then, compare the model to real molecules!

5. Using the VSEPR model, the molecular geometry of the central atom in N2O is. (A) linear. 6. Using the VSEPR model, the molecular geometry of the central atom in SO3 is. (B) trigonal planar. 7. Identify the number of electron groups around a molecule with sp3d2 hybridization. (A) Six.Question: Draw Lewis Structures for the following molecules/polyatomic ions: NO3- NO2* CH3NH3 C2H5+ HCO3- C2H N2H HONO2 C2HCI Identify: number of valence electrons, number of electron groups, electron geometry, molecular geometry, bond angles, resonance structures, formal charge, polar bonds, and polar molecules. There are 2 steps to solve this ...For BrF5, we have a total of 42 valence electrons. Bromine is the least electronegative, we'll put that in the center and then we'll put 5 Fluorines around the outside. We'll draw single bonds between the atoms for a total of 5 single bonds, so 10 valence electrons. Then we'll go around the outside, 12, and complete the octets for Fluorine: 14 ...What is the electron-domain charge-cloud geometry of BrF5? Question: What is the electron-domain charge-cloud geometry of BrF 5? Bromine Pentafluoride: Bromine pentafluoride is a covalent molecule with the formula BrF 5. It's extremely toxic and can lead to death with overexposure to it. Bromine pentafluoride can be generated by reacting ...Study with Quizlet and memorize flashcards containing terms like According to VSEPR theory, if there are two electron domains on a central atom, they will be arranged such that the angles between the domains are _____., An electron domain consists of _____. a) a nonbonding pair of electrons b) a single bond c) a multiple bond, The O-C-O bond angle int he CO3^2- ion is approximately_____. and more.Predict the electron geometry and molecular geometry and state whether the molecule is polar or nonpolar. Draw the Lewis structure and Molecular model for CH_2CH_2. Draw the Lewis structure for SF2. For this molecule, determine the molecular geometry, electron domain geometry, bond angles, and hybridization about the central atom.The last valence electron occupies the dx orbital. As one electron goes to s orbital, three occupy the p orbital, and the last one enters the d orbitals of the central atom, the hybridization of Pbr5 is sp3d. Molecular Geometry of PBr5. In many cases, the lewis structure of the compound helps in understanding the molecular geometry of the compound.May 22, 2023 · Also, only 40 valence electrons of BrF5 molecule are used in the above structure. But there are total 42 valence electrons in BrF5 molecule (as calculated in step #1). So the number of electrons left to be kept on the central atom = 42 – 40 = 2. So let’s keep these two electrons (i.e electron pair) on the central atom. Electron Geometry: Tetrahedral Bonding Domains: 3 Non-bonding Domains: 1 Molecular Geometry: Trigonal Pyramidal Hybridization: sp³ Bond Angles: ≈107° Electron Domains: 4 Lone Pairs: 2 Electron Geometry: Tetrahedral Bonding Domains: 2 Non-bonding Domains: 2 Molecular Geometry: Bent Hybridization: sp³ Bond Angles: ≈109.5°You'll get a detailed solution from a subject matter expert that helps you learn core concepts. Question: What is the electron geometry of SF4? A.) octahedral B.) square planar C.) tetrahedral D.) seesaw E.) trigonal bipyramidal What is the molecular geometry of SF4?A.) octahedral. What is the electron geometry of SF4?

Fox 45 tv dayton ohio.

Ewc chelsea.

Electron Domain Geometry Of Brf5 AP® Chemistry Crash Course, 2nd Ed., Book + Online Adrian Dingle 2014-02-13 REA's Crash Course for the AP® Chemistry Exam - Gets You a Higher Advanced Placement® Score in Less Time Crash Course is perfect for the time-crunched student, the last-minute studier, or anyone who wants a refresher on the subject.Final answer: The electron-domain geometry of BrF5 is octahedral, the molecular geometry is square pyramidal, the smallest bond angle is 90 degrees. The …If you're online a lot, you use domain name servers hundreds of times a day — and you may not even know it! Find out how this global, usually invisible system helps get Web pages t...Study with Quizlet and memorize flashcards containing terms like The electron-domain geometry of a carbon-centered compound is tetrahedral. The hybridization of the central carbon atom is, Of the following, only __________ has sp2 hybridization of the central atom., Of the following, the central atom is sp3d2 hybridized only in __________ and more.Structure of phosphorus pentachloride. PCl 5 contains 5 bonded and 0 nonbonded electron domains, giving trigonal bipyramidal e - domain and molecular geometries. (AX 5 E 0 ). Three of the bonded atoms are in equatorial positions while two are in axial positions. The bond angles between F atoms in the equatorial plane and the central S atom are ... The molecule is polar and has polar bonds. The molecule is nonpolar. 1. a. What is the electron-domain (charge-cloud) geometry of BrF5? Enter the electron-domain geometry of the molecule. b. What is the molecular geometry of BrF5? c. Ignoring lone-pair effects, what is the smallest bond angle in BrF5? Thus total electron pairs for bonding = 21, and participate in bond formation. and remaining 1 pair as a lone pair. Bromine act as a central atom due to less electronegativity than fluorine. A Lewis dot structure consists of five Br-F bonds in Brf5. Brf5 lewis structure resonance. In Lewis structure of Brf5 is composed of 42 valence electrons ...An explanation of the electron geometry for the BF3 (Boron trifluoride) . The electron geometry for the Boron trifluoride is also provided.The ideal bond ang...BrF 5 Lewis structure. BrF 5 (bromine pentafluoride) has one bromine atom and five fluorine atoms. In the BrF 5 Lewis structure, there are five single bonds around the bromine atom, with five fluorine atoms attached to it. Each fluorine atom has three lone pairs, and the bromine atom has one lone pair. ….

The electron-pair geometry and molecular structure are identical, and CO 2 molecules are linear. (b) We write the Lewis structure of BCl 3 as: Thus we see that BCl 3 contains three bonds, and there are no lone pairs of electrons on boron. The arrangement of three regions of high electron density gives a trigonal planar electron-pair geometry.You'll get a detailed solution from a subject matter expert that helps you learn core concepts. Question: QUESTION 13 What is the electron geometry of BrF5? :: F it F- -Br :: A. Trigonal planar B. Tetrahedral C. Octahedral D. Trigonal bipyramidal. Here’s the …Examples: In a water molecule, H 2 O two of the central oxygen atom's valence electrons form two bond pairs with the hydrogen atoms, while the remaining four electrons form two lone pairs. Therefore, the molecular geometry of water is bent and the electron geometry of water is tetrahedral. Ammonia, NH 3, is another example with different molecular and electron geometries.An explanation of the electron geometry for the HCN (Hydrogen cyanide). The electron geometry for the Hydrogen cyanide is linear.It is important to note that...Lewis structure give the idea of the compound or atom valency electrons. Part 1: 1) Draw the Lewis structure for the following ionic compounds. If there are polyatomic ions, draw the place the polyatomic ion in brackets and draw out the full structure. Please see the example below.The electron geometry of PCl 5 is also Trigonal bipyramidal. The hybridization of phosphorous in PCl 5 is sp 3 d. Since its steric number is 5. In PCl 5, axial atoms (2 P-Cl bonds) make a 90º angle with the plane, and equatorial atoms (3 P-Cl bonds) make a 120º angle with each other. PCl 5 is nonpolar in nature.There are three single bonds and one lone pair of electrons in the NH3 molecule. It has a molecular geometry of trigonal pyramidal which also looks like a distorted tetrahedral structure. The shape is distorted because of the lone pairs of electrons. This pair exerts repulsive forces on the bonding pairs of electrons.20 Jan 2021 ... HSO3- Lewis Structure: How to Draw the Lewis Structure for the Bisulfite Ion ... BrF5 (Bromine pentafluoride) Molecular Geometry, Bond Angles. Electron domain geometry of brf5, Electron geometry: octahedral. Hybridization: sp 3 d 2. Then draw the 3D molecular structure using VSEPR rules: Decision: The molecular geometry of BrF 5 is square pyramidal with asymmetric charge distribution on the central atom. Therefore this molecule is polar. Bromine Pentafluoride on Wikipedia. Back to Molecular Geometries & Polarity ..., Here’s the best way to solve it. a) SnCl3- has Sn as central atom with 4 electron domains and molecular geometry is trigonal pyramidal …. Give the electron-domain and molecular geometries for the following molecules and ions. electron domain molecular geometry (a) SnCl3− -Select- (2) ⋯ -.Select-., Even though officially Google is no longer offering free Google Apps for Business accounts, there is still a way to sign up for Google Apps and get it linked to your own domain. Ju..., Steps. Use these steps to correctly draw the BrF 5 Lewis structure: #1 First draw a rough sketch. #2 Mark lone pairs on the atoms. #3 Calculate and mark formal …, BrF5 is an interhalogen compound as it consists of one Bromine and five Fluorine atoms. To find the molecular geometry of this molecule, we use the formula of Steric Number and the AXN …, An easy method to determine the hybridization of an atom in an element is to observe the number of its electron regions or electron domains. Lone pairs and covalent bonds with other atoms contribute to being electron domains. Two domains give us an sp hybridization. Three domains give us and sp 2 hybridization and so on., The BrF5 or the bromine pentafluoride has a bond angle of 90°. Therefore, the angle formed between the central atoms and the other ones has an angle of 90° between them. As for the total number of 90° bond angles in the bromine pentafluoride, the compound consists of 5 bond pairs of atoms and one lone pair. Also, it has to be kept in mind ..., A=Number of central atoms. X=Number of surrounding atoms. E= Number of lone pairs on central atom. For this one, we can see that it has one central atom (Br), five surrounding atoms (F), and one lone pair of electrons around the central atom, making it AX 5 E. Step 3: Use the VSEPR table to determine the geometry of BrF5., The number of domains on S in this molecule is three. Domain geometry is trigonal planar. But there is a lone pair on the central atom. So, according to VSEPR theory, the molecular geometry becomes bent or V-shape. Hybridization on the central atom is. Consider the molecule BrF5: The central atom is Br. The number of domains on the central atom ..., Wayne Breslyn. 773K subscribers. 293. 37K views 3 years ago. An explanation of the molecular geometry for the BrF5 (Bromine pentafluoride) including a description of the BrF5 bond …, 2. The carbon atom forms two double bonds. Each double bond is a group, so there are two electron groups around the central atom. Like BeH 2, the arrangement that minimizes repulsions places the groups 180° apart. 3. Once again, both groups around the central atom are bonding pairs (BP), so CO 2 is designated as AX 2., What is the electron-domain (charge-cloud) geometry of BrF5? Question: What is the electron-domain (charge-cloud) geometry of BrF5? This question hasn't been solved yet!, May 3, 2018 · Here's what I get. > a) "BrF"_5 The Lewis structure is The central "Br" atom has six electron domains, so the electron geometry is octahedral. The molecular geometry is square pyramidal. All the "Br-F" bonds are polar, The two opposing pairs in the horizontal plane cancel each other. However, the vertical bond dipole has no opposing partner, so the molecule is polar. **b) "SO"_4^"2-" The Lewis ... , 1 the hybridizations of bromine in BrF5 and ofaresnic in AsF5 are ----- and ----- respectively. a) sp3d, sp3d2b) sp3d2, sp3d2c) sp3d2, sp3dd) sp3, sp3de) sp3d, sp3 2) The electron -domain geometry of the AsF6- ion isoctahedral. The hybrid orbitals used, Other molecules with a trigonal planar electron domain geometry form \(sp^2\) hybrid orbitals. Ozone \(\left( \ce{O_3} \right)\) is an example of a molecule whose electron domain geometry is trigonal planar, though the presence of a lone pair on the central oxygen makes the molecular geometry bent. The hybridization of the central \(\ce{O ..., To determine the electron geometry of compounds, several principles such as the Lewis structure, valence shell electron pair repulsion, and octet rule are considered. The Lewis structure is used to determine the bonding and nonbonding electrons by illustrating the valence electrons participating in the formation of chemical bonds in the reaction., Electron Domain Geometry Of Brf5 CliffsNotes AP Chemistry Angela Woodward Spangenberg 2016-01-12 Test prep for the AP Chemistry exam, with 100% brand-new content that reflects recent exam changes Addressing the major overhaul that the College Board recently made to the AP Chemistry exam, this AP Chemistry ..., Textbook Question. Give the electron-domain and molecular geometries for the following molecules and ions: (a) BeF2. Verified Solution. This video solution was recommended by our tutors as helpful for the problem above. 1m. 363. Mark as completed. Was this helpful? 0., Enter the molecular geometry of the molecule. View Available Hint (s) Submit Part D Which choice best. Here’s the best way to solve it. To determine the electron geometry of BrF5, consider the number of electron pairs around the central bromine atom, including both bonding pairs and lone pairs. , Electron Domain Geometry Of Brf5 Chemical Structure and Bonding Roger L. DeKock 1989 "Designed for use in inorganic, physical, and quantum chemistry courses, this textbook includes numerous questions and problems at the end of each chapter and an Appendix with answers to most of the problems."--, The bonding in molecules such as NH 3 or H 2 O, which have lone pairs on the central atom, can also be described in terms of hybrid atomic orbitals. In NH 3, for example, N, with a 2s 2 2p 3 valence electron configuration, can hybridize its 2s and 2p orbitals to produce four sp 3 hybrid orbitals. Placing five valence electrons in the four …, May 27, 2023 · A=Number of central atoms. X=Number of surrounding atoms. E= Number of lone pairs on central atom. For this one, we can see that it has one central atom (Br), five surrounding atoms (F), and one lone pair of electrons around the central atom, making it AX 5 E. Step 3: Use the VSEPR table to determine the geometry of BrF5. , What is the electron geometry about a central atom that has five regions of electron density? A central atom is found to have one double bond, one single bond, and one non-bonding pair of electrons. How many electron domains does the central atom have?, Predict the electron geometry and molecular geometry and state whether the molecule is polar or nonpolar. Draw the Lewis structure and Molecular model for CH_2CH_2. Draw the Lewis structure for SF2. For this molecule, determine the molecular geometry, electron domain geometry, bond angles, and hybridization about the central atom., BrF5 Molecular and Electron Geometry based on the VSEPR theory, the steric number, Hybridization and expected bond angles., Give the electron domain and molecular geometry for BrF5. Predict the electron domain geometry for each of the following: a. AsF3 b. CH3+ c. BrF3 d. ClO3- e. XeF2 f. BrO2-Give the electron domain and molecular geometry for NH2Cl. Give the electron domain and molecular geometry for SO3. The electron-domain geometry of is tetrahedral. a) SO2 b ..., You'll get a detailed solution from a subject matter expert that helps you learn core concepts. Question: 4) Determine the electron geometry (eg) and molecular geometry (mg) of CO32−. A) eg = trigonal planar, mg= trigonal planar B) eg = tetrahedral, mg= tetrahedral C) eg = trigonal planar, mg= bent D) eg = tetrahedral, mg = trigonal planar E ..., Electron Domain Geometry Of Brf5 electron-domain-geometry-of-brf5 2 Downloaded from app.ajw.com on 2023-06-02 by guest reactions Reaction rates Thermodynamics Chemical equilibrium Every section includes review questions and answers. Also included in the guide are two full-length practice tests as well as a math review section, 1 the hybridizations of bromine in BrF5 and ofaresnic in AsF5 are ----- and ----- respectively. a) sp3d, sp3d2b) sp3d2, sp3d2c) sp3d2, sp3dd) sp3, sp3de) sp3d, sp3 2) The electron -domain geometry of the AsF6- ion isoctahedral. The hybrid orbitals used, the number of electron domains by adding sin-gle, double, or triple bonds, or lone pair elec-trons. In the lower left corner you will find both the molecule ge-ometry and the electron geometry. Table 2. Model Electron Domain Geometries. Number'of' Electron' Domains' ElectronDomain Geometry' Bond'Angles' 2 Linear 180o 3 4 5 6, Chemistry questions and answers. Give the electron-domain and molecular geometries for the following molecules and ions. electron domain molecular geometry (a) N2O (central N) ---Select--- bent linear octahedral seesaw square planar square pyramidal tetrahedral trigonal planar trigonal pyramidal trigonal bipyramidal ---Select--- bent linear ..., An explanation of the molecular geometry for the BrCl5 (Bromine pentachloride) including a description of the BrCl5 bond angles. The electron geometry for th..., Therefore, electron domain number would be the same as bonding electron pairs number which means that electron domain geometry is the same as molecular geometry. Four fluorine atoms are placed in the plane and two are placed below and above the plane. Electron domain geometry and molecular geometry are octahedral \textbf{octahedral} octahedral.